设数列{an}满足a1=2,an+1=an+1/an(n=1,2,3.),证明:an>根号下(2n+1).急用
人气:441 ℃ 时间:2019-08-20 21:29:06
解答
证明:(开方即 1/2 次方,用^表示)n=1时,A_1 = 4^(1/2) = 2 > (2*1 + 1)^(1/2) = 3^(1/2);假设n=k时,A_k > (2k + 1)^(1/2);则n=(k+1)时,A_(k+1) = A_k + 1/A_k;欲证结果,只需证(A_k + 1/A_k)^2 > (2k + 3);而(A_k ...
推荐
- 设数列{an}满足a1=2,an+1=an+(1/an),(n=1,2,3…).(1)证明:an>(2n+1)1/2(根号)对一切正整数n都成立
- 证明:若a1=根号2,an+1=根号(2an),n=1,2,…,则数列{an}收敛,并求其极限.
- 证明a1=根号2,an+1=根号2an,n=1,2,,则数列an收敛并求出极限
- 数列an满足a1=1,an-an-1=1/根号n+1+根号n,则an=
- 设数列{an}满足a1=2,an+1^2=an^2+2+1/an^2(n=1,2,3.)求证:an>根号下2n+1.
- ---I am so glad to see you here .I miss you very much .
- n是自然数,N=[n+1,n+2,...,3n]是n+1,n+2,...,3n的最小公倍数,如果N可以表示成N=2^10*奇数,n的可能值有几个?
- 三个粮站共有面粉1400千克,甲站与乙站的面粉的质量比是3:4,乙站与丙站的面粉质量比是6:7,三个粮站各有
猜你喜欢