已知数列an中,a1=1,且点P(an,an+1),在直线X-Y+1=0上,
设b(n)=1/a(n),Sn表示数列{bn}的前n项和,试问:是否存在关于n的整式g(n),使得S1+S2+S3+…+Sn-1=[(Sn)-1]*g(n)对于一切不小于2的自然数n恒成立?若存在,写出g(n)的解析式,并加以证明;若不存在,说明理由.
人气:357 ℃ 时间:2020-02-05 16:40:18
解答
1、点坐标代入得:an-a(n+1)+1=0,a(n+1)=an+1,即an是等差数列,a1=1,d=1,an=n;
2、bn=1/an=1/n;
sn=1+1/2+1/3+…+1/n,
S1+S2+S3+…+Sn-1=1+(1+1/2)+(1+1/2+1/3)+…+(1+1/2+1/3+…+1/(n-1))
=(n-1)+(n-2)/2+(n-3)/3+…+1/(n-1)
=(n/1-1)+(n/2-1)+(n/3-1)+…+(n/(n-1)-1)
=n(1/1+1/2+1/3+…+1/(n-1))-(n-1)
=n[1/2+1/3+1/4+…+1/(n-1)+1/n]+n-1-(n-1)
=n[1/2+1/3+1/4+…+1/(n-1)+1/n]
=n[(sn)-1]=g(n);
所以,g(n)=n,解析式存在
推荐
- 已知数列{an}和{Bn}满足a1=2 an-1=an(an+1-1) bn=an-1 n∈N+
- 已知数列an中,a1=-1,a(n+1)*an=a(n+1)-an,则数列通项公式an=?
- 已知数列an中a1=1,前n项和为sn,且P(an,an+1)在直线x-y+1=0上,则1/S1+1/S2+1/S3...+1/Sn=?
- 已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1. (1)设bn=an+1-2an,求证{bn}是等比数列 (2)设Cn=an2n,求证{Cn}是等差数列 (3)求数列{an}的通项公式及前n项和公式.
- 已知数列a1=2,an+1=an+[1/n(n+2)]
- 小林喝了一瓶牛奶的3分之1后,倒满水,又喝了2分之1杯,再倒满水,最后全部喝完,小林和的牛奶多还是水多?
- 在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60,PA⊥平面ABCD,E为PD的中点,PA=2AB=2
- 将8克的NaOH溶于多少克水中,才能使每10个水分子溶有一个钠离子
猜你喜欢