F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(要解析)
F1 F2 是椭圆X^2/4+Y^2/3=1的两个焦点,椭圆上一点P满足∠PF1F2=120°,求△PF1F2的面积(要解析,
人气:381 ℃ 时间:2019-08-22 16:12:31
解答
设:F1,F2为左右焦点,作PM⊥F1F2于M,F1(-1,0),c=1,|F1F2|=2直线PF1斜率为-√3,∴PF1方程为:y=-√3(x+1)代入椭圆方程得:x²/4+(x+1)²=1,解得:x=-8/5∴MF1=|-8/5-(-1)|=3/5∴PM=√3*MF1=3√3/5∴S△PF1F2=F1F2...
推荐
猜你喜欢
- 诗集的前言 几十字的
- 从0.12mol的NaCl、MgCl2、AlCl3三种溶液,体积均为500ml时Cl-的物质的量浓度为
- 若定义新的运算;‘a※.b=-2a/(a-b)三次方求4※6
- 【急!】高一化学填空题一道.
- 按照计数习惯,整数从( )为位起,每()数位是一级
- 已知集合M={直线},N={圆},则M交N中元素个数为_______
- 一桶水,第一次倒出一半,然后再倒回桶中8千克,第二次倒出桶中水的一半,第三次倒出36千克,桶中还剩下12千克水,原来桶中有水多少千克?
- 一袋大米,第一次吃了40%还多5千克,第二次吃的是第一次的80%,这时还剩下12千克.这袋大米原来有多少千克?