设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵
人气:237 ℃ 时间:2019-10-26 01:35:48
解答
首先证明任取n维列向量x≠0,Bx≠0
因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.
这样因为A正定,任取x≠0,Bx≠0,所以x'B'ABx=(Bx)'A(Bx)>0
即,B'AB正定
推荐
- A,B是正定矩阵 AB=BA 证明AB也为正定矩阵
- 设A是n阶正定矩阵,AB是n阶实对称矩阵,证明AB正定的充要条件是B的特征值全大于零
- A为m*n阶实矩阵,r(A)=n
- 设A为m阶实对称矩阵且正定,B为m×n矩阵,证明:BTAB为正定矩阵的充要条件是rankB=n
- 设A,B为n阶实正定矩阵,AB=BA且A^2=B^2,证明A=B.
- 将生锈的铁钉投入到稀盐酸中,刚开始观察到的现象是什么?其原因是(用化学式表示)
- 准备一副扑克牌,去掉J、Q、K和大、小王.从剩下的牌中随意拿出四张放在桌子上,根据这四张牌上的数字进行
- 谁能告诉我/biskit/是哪个单词的音标
猜你喜欢
- 有一批书,分给公司的所有人,若每人一本,则还差19本,若每个部门派7本,则多出1本,如果再招聘2个人进公司,则正好每个部门有9人,问:总共有( )个部门.
- 满足条件{1}包含于A包含于{1,2,3,4}的集合A的个数为、(能给一下解析过程吗)
- 用千里迢迢,娓娓动听,大名鼎鼎,风尘仆仆,文质彬彬组织成一句话,不少于100字
- 七大洲中跨经度最广的是_,跨纬度最广的是_.
- as...as possible组句
- Let's send her a computer game改为同义句
- 用描点法画出y=-1/2x²的函数图象并指出函数图象的变化趋势
- 已知m^2+m-1=0,求代数式m^3+5m^2+3m-2012的值