设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵
人气:157 ℃ 时间:2019-10-26 01:35:48
解答
首先证明任取n维列向量x≠0,Bx≠0
因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.
这样因为A正定,任取x≠0,Bx≠0,所以x'B'ABx=(Bx)'A(Bx)>0
即,B'AB正定
推荐
- A,B是正定矩阵 AB=BA 证明AB也为正定矩阵
- 设A是n阶正定矩阵,AB是n阶实对称矩阵,证明AB正定的充要条件是B的特征值全大于零
- A为m*n阶实矩阵,r(A)=n
- 设A为m阶实对称矩阵且正定,B为m×n矩阵,证明:BTAB为正定矩阵的充要条件是rankB=n
- 设A,B为n阶实正定矩阵,AB=BA且A^2=B^2,证明A=B.
- 已知a-b=3,ab=2,求代数式3分之1a的2此方b-3分之1ab的2次方
- 若关于x的方程m−1x−1−xx−1=0有增根,则m的值是( ) A.3 B.2 C.1 D.-1
- 关于x的方程k2x2+2(k-1)x+1=0有两个实数根,则k的取值范围是( ) A.k<12 B.k≤12 C.k<12且k≠0 D.k≤12且k≠0
猜你喜欢