过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点,如果x1+x2=6,那么|AB|=( )
A. 6
B. 8
C. 9
D. 10
人气:192 ℃ 时间:2020-04-16 18:34:51
解答
由题意,p=2,故抛物线的准线方程是x=-1,
∵抛物线 y2=4x 的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点
∴|AB|=x1+x2+2,
又x1+x2=6
∴∴|AB|=x1+x2+2=8
故选B.
推荐
- 过抛物线y^2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果X1+X2=6,那么AB的长是( ).
- 过抛物线方程为y2=4x的焦点作直线l交于P(x1,y1),Q(x2,y2)两点,若x1+x2=6,则|PQ|=_.
- 过抛物线y2=4x的焦点F,作直线L交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,求:(1)弦长|AB
- 抛物线y^2=4x的焦点为F.A(x1,y1),B(x2,y2)(x1>x2,y1>0,y2
- 过抛物线y2=4x的焦点作直线交抛物线于a(x1,y1)b(x2,y2)两点若y1+y2=2倍根号2则|ab|的值为
- out im window look afraid you of the window can't out怎么连词成句
- 利用微分进行近似计算ln(1.1)
- 对于这个可逆反应2CO+4H2=CH3CH2OH+H2O
猜你喜欢