设函数y=f(x)(x∈R,且x≠0)对任意非零实数x1,x2,满足f(x1)+f(x2)=f(x1x2)
1.求f(1)+f(—1)的值
2.判断函数y=f(x)的奇偶性.
人气:231 ℃ 时间:2019-08-19 01:36:23
解答
1.f(x1)+f(x2)=f(x1x2),即f(x1x2)=f(x1)+f(x2),令x1=x2=1,代入得f(1*1)=f(1)+f(1),所以f(1)=0;令x1=x2=-1,代入得f(1)=f[(-1)*(-1)]=f(-1)+f(-1)=2f(-1)=0,所以f(-1)=0;2.令x1=-1,代入得f(-x2)=f(-1)+f(x2)=0+f(x2)=f...
推荐
- 设函数y=f(x)对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2)
- 设函数y=f(x)(x∈R),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函数,则不等式f(x)+f(x-1/2)≤0的解集为
- 设函数y=f(x)(x属于R,且x不等于0),对任意非零实数x1,x2.满足f(x1)+f(x2)=f(x1x2)
- 已知函数f(x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2)
- 已知函数y=f (x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),试判断f(x)的奇偶性.
- 若函数y=(2m²-m-3)x+m在区间【-1,1】上的最小值是1,实数m的值是——
- 已知函数f(X)=x2+ax+b,A={x|f(x)=2X}={2},试求a,b的值及f(x)
- 自东汉至西晋,北方少数民族大量内迁,出现这种现象的主要原因是( ) A.
猜你喜欢