已知a1^2+a2^2+a3^2+…………+an^2=1,x1^2+x2^2+x3^2+…………xn^2=1,求证:
a1 X1+a2 X2+a3 X3+…………an Xn≤1 提示,用基本不等式的三个定理做
人气:259 ℃ 时间:2020-03-17 07:18:46
解答
a1^2+a2^2+a3^2+…………+an^2+1^2+x2^2+x3^2+…………xn^2-2(a1 X1+a2 X2+a3 X3+…………an Xn)=(a1-x1)^2+(a2-x2)^2+.+(an-xn)^2>=0 所以2(a1 X1+a2 X2+a3 X3+…………an Xn)2(a1 X1+a2 X2+a3 X3+…………an Xn)<=2 你这一步是咋得到的?a1^2+a2^2+a3^2+…………+an^2+x1^2+x2^2+x3^2+…………xn^2-2(a1 X1+a2 X2+a3 X3+…………an Xn)=(a1-x1)^2+(a2-x2)^2+........+(an-xn)^2>=0这不是很清楚吗。。。a1^2+a2^2+a3^2+…………+an^2+x1^2+x2^2+x3^2+…………xn^2-2(a1 X1+a2 X2+a3 X3+…………an Xn)>=0所以2(a1 X1+a2 X2+a3 X3+…………an Xn)<=a1^2+a2^2+a3^2+…………+an^2+x1^2+x2^2+x3^2+…………xn^2=1+1=2
推荐
- (A1+A2+.An-1)(A2+A3+.+An-1+An)-(A2+A3+..An-1)(A1+A2+...An)
- 设a1=x1,a2=x1-x2,a3=x1+x2+x3……an=x1+x2+……+xn,化简:x2/a1a2+x3/a2a3+……+xn/an-1an
- 已知a1^2+a2^2+a3^2+.+an^2=1,x1^2+x2^2+.+xn^2=1,求证:a1x1+a2x2+...+anxn
- 在关于x1、x2、x3的 方程组{x1+x2=a1,x2+x3=a2,x3+x1=a3}已知a1>a2>a3将x1、x2、x3按从小到大的顺序排列
- 关于x1,x2,x3的方程组为 x1+x2=a1 x2+x3=a2 x3+x1=a3 已知a1>a2>a3 ,试比较x1,x2,x3 的大小~
- sinx+cosx=根号6/2,0
- "I will never leave
- 如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F,点E是AB的中点,连接EF且CF⊥AD,点E是AB的中点,连结EF(1)AC=6,BC=10求EF的值(2)若△AEF的面积是1,求梯形DBEF的
猜你喜欢