在斜三棱柱ABC-A1B1C1中,AC=BC,D为AB的中点,平面A1B1C1⊥平面ABB1A1,异面直线BC1⊥AB1.
(1) 求证:AB1⊥平面A1CD;
(2) 若CC1与平面ABB1A1的距离为1,A1C=根号37 ,AB1=5,求三棱锥A1-ACD的体积.
人气:441 ℃ 时间:2019-08-20 18:37:31
解答
想得我真辛苦啊,主要是没有配图,这个图从我个人的主观上觉得不好画出来.但根据结果来看,一旦把这个图画出来,问题就解决了.1.在原图的基础上连接AC1,设A1C与AC1的交点为E(即平行四边形对角线的交点)则:E为A1C的中...
推荐
- 已知直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点. (1)求证:BC1∥平面CA1D; (2)求证:平面CA1D⊥平面AA1B1B; (3)若底面ABC为边长为2的正三角形,BB1=3,求三棱锥B1-A1DC的体积.
- 如图,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥A1B,D为AC的中点. (Ⅰ)求证:B1C∥平面A1BD; (Ⅱ)求证:平面AB1C1⊥平面ABB1A1.
- 在三棱柱ABC—A1B1C1中,E是AC的中点,求证AB1‖平面BEC1
- 在直三棱柱A1B1C1-ABC中,BC=CC1 ,当底面△A1B1C1满足条件----时,有AB1⊥BC1?
- 如图所示,在三棱柱ABC——A1B1C1中,AC=BC=BB1,D为AB的中点,求证:BC1//平面CA1D
- 已知点P1(4,-9)和P2(6,3)求以P1P2为直径的圆的方程,并求圆C上的动点M到原点O的距离的最大值、最小值
- (-24)乘(8分之1-3分之1+4分之1)+(-8)
- 果农常用保鲜袋包水果,这样做的目的之一是减少水分的____;雪熔化的天气有时比下雪时还冷,这是因为雪熔化是_____过程,需要_______.
猜你喜欢