数列{an}的前n项和为Sn,已知A1=a,An+1=Sn+3^n(三的n次方),n∈N*
设数列an的前n项和为Sn,已知a1=a(这里不晓得是a1=a还是a1=1),a(n+1)=Sn+3的n次方,n∈N*
1.设bn=Sn-3的n次方,求数列bn的通项公式
2.a(n+1)≥an,n∈N*,求a的取值范围
人气:339 ℃ 时间:2019-08-19 08:17:24
解答
不是这样的 1、A(n+1)=S(n+1)-Sn=Sn+3^n >>>> S(n+1)-3^(n+1)=2Sn+3^n-3^(n+1)=2Sn-2×3^n=2[Sn-3^n]
则:[S(n+1)-3^(n+1)]/[Sn-3^n]=2=常数,即:[b(n+1)]/[bn]=2=常数,所以数列{bn}是以b1=S1-3=a1-3=a-3为首项、以q=2为公比的等比数列,则:
①若a=3,则bn=0;②若a≠3,则bn=(a-3)×2^(n-1)
2、当a=3时,显然满足;
若a≠3,则Sn-3^n=bn=(a-3)×2^(n-1) ===>>>> Sn=(a-3)×2^(n-1)+3^n
则:An=Sn-S(n-1)===>>>>> An=(a-3)×2^(n-2)+2×3^(n-1)
A(n+1)≥An ===>>>> (a-3)×2^(n-1)+2×3^(n)≥(a-3)×2^(n-2)+2×3^(n-1)
(a-3)×2^(n-2)≥-4×3^(n-1)
a-3≥-8[3/2]^(n-1) 其中n≥2
则:a≥3-8[3/2]^(n-1) ===>>>> 3-8[3/2]^(n-1)的最大值是
当n=2时取得的,是-9
则:a≥-9
另外,A2=S1+3=A1+3,显然有:A2>A1,满足.
综合,有:
a≥-9 懂了?
推荐
- “5.设数列{an}的前n项和为Sn,已知A1=a,An+1=Sn+3^n(三的n次方),n∈N*
- 设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由 (Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式; (Ⅱ)若an+1≥an,n∈N*,求a的取值范围.
- 高中数列题.a1=a,an+1=Sn+3的n次方,bn=Sn-3的n次方,求bn的通项
- 已知数列{an}中a1=1/2,前n项和2Sn=Sn-1-(1/2)^n次方+2(n≥2),令bn=2^n次方 an,求证Bn为等差数列,并求an通项
- 设数列{an}的前n项和为Sn已知a1=a,a(n+1)=Sn+【3的n次方】n∈正整数设bn=Sn-[3的n次方]求{bn}的通项公式
- 现在有鸡、兔共居一笼,鸡头和兔头一共有15个,鸡脚和兔脚共有44只,问鸡、兔各有几只?
- 求助-翻译-巴西人的邮件---thanks
- 若(x^m÷x^2n)^3÷x^m-n与-1/4x^2为同类项,且2m+5n=7,求25n^2-4m^2的值
猜你喜欢