在正方形ABCD中,P是对角线AC上一点,PE⊥AB于E,PF⊥BC于,试猜想EF与PD的数量关系,位置关系,并给出证明
人气:452 ℃ 时间:2020-02-04 08:16:16
解答
EF=PD. 证明如下:
∵ABCD是正方形,∴EB⊥FB,又PE⊥EB、PF⊥FB,∴BEPF是矩形,∴EF=PB.
∵ABCD是正方形,∴BC=DC、∠BCP=∠DCP=45°,又CP=CP,∴△BCP≌△DCP,
∴PB=PD.
由EF=PB、PB=PD,得:EF=PD.
推荐
- 在正方形ABCD中,p是对角线AC上一点,PE⊥AB于E,PF⊥BC于F.试猜想EF与PD的数量,位置关系,并给出证明.
- 正方形ABCD中,P是对角线AC上一点,PE⊥AB,PF⊥BC ,垂足分别是E.F,试猜想PD.EF的
- 已知:如图,在正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,E、F是垂足.求证EF=PD
- 正方形ABCD.P为对角线AC上的点(不是中点)PE垂直AB.PF垂直BC.连接EF和PD.试说明PD=EF
- 已知:如图,在正方形ABCD中,点P是AC上任意一点(不同于A、C),且PE⊥AB,PF⊥BC,E,F是垂足.试探索EF与PD的关系.
- f(X)=loga(1+x/1-X) (a大于0且a不等于1)
- 如图,E,F分别是正方形ABCD的边CD、AD上的点.且CE=DF,AE、BF相交于点O,下列结论:①AE=BF,②AE⊥BF,③AO=OE,④S△AOB=S四边形DEOF中,错误的有_.(只填序号)
- (-5)+(-2)-(-7)
猜你喜欢