a(
| ||
(x+1)2 |
b |
x2 |
由于直线x+2y-3=0的斜率为-
1 |
2 |
所以
|
1 |
2 |
解得a=1,b=1
(II)由(I)知f(x)=
lnx |
x+1 |
1 |
x |
所以f(x)−
lnx |
x−1 |
1 |
1−x2 |
x2−1 |
x |
考虑函数h(x)=2lnx−
x2−1 |
x |
则h′(x)=
2 |
x |
2x2−(x2−1) |
x2 |
(x−1)2 |
x2 |
所以当x≠1时,h′(x)<0而h(1)=0,
当x∈(0,1)时,h(x)>0可得
1 |
1−x2 |
当x∈(1,+∞)时,h(x)<0,可得
1 |
1−x2 |
从而当x>0且x≠1时,
f(x)−
lnx |
x−1 |
lnx |
x−1 |