f(x)=lnx x+1 +1 x
所以f(x)-lnx x-1 =1 1-x2 (2lnx-x2-1 x )
考虑函数h(x)=2lnx-x2-1 x (x>0),
则h′(x)=2 x -2x2-(x2-1) x2 =-(x-1)2 x2
所以当x≠1时,h′(x)<0而h(1)=0,
当x∈(0,1)时,h(x)>0可得1 1-x2 h(x)>0;
当x∈(1,+∞)时,h(x)<0,可得1 1-x2 h(x)>0
从而当x>0且x≠1时,
f(x)-lnx x-1 >0即f(x)>lnx x-1