∴函数f(x)=ex+x-2在R上单调递增,
分别作出y=ex,y=2-x的图象如右图所示,
∴f(0)=1+0-2<0,f(1)=e-1>0,
又∵f(a)=0,
∴0<a<1,
同理,g(x)=lnx+x2-3在R+上单调递增,g(1)=ln1+1-3=-2<0,g(
3 |
3 |
3 |
1 |
2 |
又∵g(b)=0,
∴1<b<
3 |
∴g(a)=lna+a2-3<g(1)=ln1+1-3=-2<0,
f(b)=eb+b-2>f(1)=e+1-2=e-1>0,
∴g(a)<0<f(b).
故选:D.
3 |
3 |
3 |
1 |
2 |
3 |