> 数学 >
已知函数f(x)=sin^2x-2sinxcosx+3cos^2x(x€R)说明函数y=f(x)的图象可由y=cos2x的图象经过怎样的变换得到.当x€[19兀/24,兀]时,求函数f(x)的最大值和最小值
人气:106 ℃ 时间:2019-08-19 06:07:50
解答
f(x)=sin^2x-2sinxcosx+3cos^2x

=1/2(1-cos2x)-sin2x+3/2(1+cos2x)

=2+cos2x-sin2x
=2+√2cos(2x+π/4)
y=cos2x先沿x轴向左平衡π/8,得到y=cos(2x+π/4)
再纵坐标扩大 到原来的√2倍,得到y=√2cos(2x+π/4)
然后沿着y轴向上平移2,得到 y=2+√2cos(2x+π/4)
当x€[19兀/24,兀]时,2x+π/4∈〔11π/6,9π/4〕
以第一和第四象限内
所以当cos(2x+π/4)=cos2π=1时,ymax=2+√2
当cos(2x+π/4)=cos9π/4=√2/2时,ymin=3
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版