归纳法证明1/2²+1/3²+1/(n+1)²>1/2-1/(n+2),n=k时不等式成立,n=k+1时应推得目标不等式为
人气:452 ℃ 时间:2020-05-15 04:05:12
解答
证:n=k时不等式成立,即:1/2²+1/3²+1/(k+1)²>1/2-1/(k+2)
那么n=k+1时,1/2²+1/3²+1/(k+1)²+1/(k+1+1)²>1/2-1/(k+2)+1/(k+1+1)²
=1/2-(k+2)/(k+2)²+1/(k+2)²
=1/2-(k+1)/(k+2)²
∵(k+1)(k+3)<(k+2)²
∴ (k+1)/(k+1)(k+3)>(k+1)/(k+2)²即:1/(k+3)>(k+1)/(k+2)²
1/2-1/(k+3)<1/2-(k+1)/(k+2)²
∴n=k+1时,1/2²+1/3²+1/(k+1)²+1/(k+1+1)²>1/2-(k+1)/(k+2)²>1/2-1/(k+3)
命题得证
推荐
- 用数学归纳法证明“1+12+13+…+12n−1<n(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是( ) A.2k-1 B.2k-1 C.2k D.2k+1
- 利用数学归纳法证明不等式“1+1/2+1/3+……+1/[(2^n)-1]=2,n∈N*)”的证明过程中,由“n=k”到由“n=k+1"时,左边增加的式子是_______.
- 用数学归纳法证明不等式:1/n+1/n+1+1/n+2+…+1/n2>1(n∈N*且n>1).
- 求用数学归纳法证明:对于大于2的一切正整数n,下列不等式都成立
- 用数学归纳法证明不等式1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
- 下式等号左边有12个2,在适当的地方填上加、减、乘、除符号或括号……
- 仿照示例,标出诗句的朗读节奏 英雄失去理想,蜕作庸人?
- 土星可以近似的看作是球体,他的半径为6×10^4km,他的体积是多少,(派取3.14)
猜你喜欢