数列的题,
求证:等比数列an=(2/3)^n-2任意三项不可能构成等差数列
人气:178 ℃ 时间:2020-02-05 07:58:28
解答
一楼没注意“任意”二字,下面是本人的解法
设ax,ay,az,满足条件,且设xaz>0,
故有2ay=ax+az
2*(2/3)^y-2=(2/3)^x-2+(2/3)^z-2 两边同时乘以(3^z)/(2^x)
2*2^(y-x)*3^(z-y)=3^(z-y)+2^(z-x)
左边为偶数
右边第一项为奇数,第二项为偶数,故整体为奇数
得出矛盾
故得证
推荐
猜你喜欢
- 求 太阳系的行星模型 与 原子的电子模型 类比
- 已知3m+4n-7=0,3a+4b+8=0,则根号[(m-a)^2+(n-b)^2]的最小值为……怎么解啊
- 初一上册级别的英语小故事 60~100词,最好不要有生词
- 1,4,5,6.每个数用一次,利用加减乘除及括号,结果等于24.
- 已知0<x<pai/2,化简:lg[cos xtan x+1-2sin^2(pai/2)]+lg[跟号2cos(x-pai/4)]-lg(1+sin2x) ...
- 从下列单词中找出不同的:camp April barefoot Valentine tennis winter
- 黑板天天被谁擦用英语怎么说
- 若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列