已知奇函数f(x)在R上是增函数,是否存在这样的实数m,使得对于所有θ∈[0,π/2]不等式f(4m-2mcosθ)-f(2sin²θ+2)>f(0)都能成立?
人气:178 ℃ 时间:2019-08-17 20:10:05
解答
假设存在;因为f(x)是R上的奇函数,所以f(0)=0;所以,原不等式化为:f(4m-2mcosθ)-f(2sin²θ+2)>0即:f(4m-2mcosθ)>f(2sin²θ+2)因为f(x)是R上的增函数所以:4m-2mcosθ>2sin²θ+22m-mcosθ>sin...
推荐
- 已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f′(x)在R上恒有f′(x)<1(x∈R),则不等式f(x)<x+1的解集为( ) A.(1,+∞) B.(-∞,-1) C.(-1,1) D.(-∞,
- 设f(x)是定义在R上的增函数,且对于任意的x都有f(2-x)+f(x)=0恒成立.如果实数m、n满足不等式组f(m2−6m+23)+f(n2−8n)<0m>3’则m2+n2的取值范围是( ) A.(3,7) B.(9,25) C.(13
- 已知定义在实数集R上的函数f(x)满足f(1)=1,且f(x)的导数f′(x)在R上恒有f′(x)<12(x∈R),则不等式f(x2)<x22+12的解集为( ) A.(1,+∞) B.(-∞,-1) C.(-1,1) D.(-
- 已知函数y=f(x)在(-∞,1]上是减函数,问:是否存在实数k,使得不等式f(k-sinx)>=f
- 已知函数f(x)=x2-2x-5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x属于R恒成立?说明理由.(2)若存在一
- 为什么1个水分子又2个氢原子和1个氧原子构成?
- 写出分别能被2,3,5整除的数的特征,写出能同时被2,3,3,5,2,5 2,3,5,整除的数的特征
- 是的,我是一叶不系之舟,曾经那样安恬地依偎在未名湖的臂抱里,在我的心无时无刻不在向往大海的波涛.
猜你喜欢