证明(2)设0<x1<x2≤2,则f(x1)−f(x2)=(x1+
| 4 |
| x1 |
| 4 |
| x2 |
| 4 |
| x1x2 |
因0<x1<x2≤2,所有x1-x2<0,1−
| 4 |
| x1x2 |
即 f(x1)>f(x2),所以f(x)在(0,2]上单调递减.
设2<x1<x2,则f(x1)−f(x2)=(x1+
| 4 |
| x1 |
| 4 |
| x2 |
| 4 |
| x1x2 |
因2<x1<x2,所有x1-x2<0,1−
| 4 |
| x1x2 |
即 f(x1)<f(x2),所以f(x)在(2,+∞)上单调递增.
| 4 |
| x |
| 4 |
| x1 |
| 4 |
| x2 |
| 4 |
| x1x2 |
| 4 |
| x1x2 |
| 4 |
| x1 |
| 4 |
| x2 |
| 4 |
| x1x2 |
| 4 |
| x1x2 |