已知函数f(x)=1/2ax^2-2x+2+lnx,在(1,正无穷)上只有一个极值点,求实数a的取值范围(用分离参数来做)
人气:354 ℃ 时间:2019-08-19 08:58:16
解答
f'(x)=ax-2+1/x=(ax²-2x+1)/x,因此在(1,+∞)中只有一个极点,因此f'(x)=0在(1,+∞)中有一个单根或者两个相同的实根.不过事实上只有当a=1时f'(x)=0才有两个相同实根,且其为1,不满足题目条件,因此f'(x)=0在(1,+∞)中有一个单根.若a=0,f'(x)=0有一根x=1/2不满足条件;若a≠0,则在4-4a≥0时f'(x)=0才有实根,因此a(1-2a)²,4a²
推荐
- 已知函数f(x)=lnx-1/2ax-2x (1)若f(x)在x=2处取得极值,求实数a的值 (
- 已知函数f(x)=1/2ax2+2x−lnx (1)当a=0时,求f(x)的极值; (2)若f(x)在区间[1/3,2]上是增函数,求实数a的取值范围.
- 已知函数f(x)=1/2ax²+(1-a)x-lnx其中a>-1,若f(x)有两个极值点
- 已知函数f(x)=(2-a)lnx+x/1+2ax当a=0时,求fx的极值
- 已知函数f(x)=1+lnx/x.(1)若函数在区间(a,a+1/2)上存在极值,其中a>0,求实数a的取值范围;(2)如果当x≥1时,不等式f(x)≥k/x+1恒成立,求实数k的取值范围;(3)求证:[(n+1)]
- 二 证明 ((a+e)²+(b+f)²+(c+g)²+(d+h)²)½≤(a²+b²+c²+d²)½+(e²+f²
- 在三角形ABC中,已知向量AB=(2,3),向量AC=(1,K),且三角形ABC的一个内角为直角,求实数K的值
- 翻译:The clocks in all public places in the UK are put forward an hour , from 1 a.m. to 2 a.m.
猜你喜欢