求以椭圆3x^2+12y^2=39的焦点为焦点,以直线y=±x/2为渐近线的双曲线方程
人气:313 ℃ 时间:2019-09-24 19:33:24
解答
∵x^2/13+y^2/(13/4)=1.∴a^2-13,b^2=13/4,a>b,焦点在X轴上.
c2=a2-b^2=13-13/4=39/4.
c=±√39/2.
由渐近线 y=±x/2得:b/a=1/2.a=2b
双曲线的焦半径c,c^2==a ^2+b^2=39/4.
(2b)^2+b^2=39/4.
5b^2=39/4,
b^2=39/20.
a^2=(2b)^2=4b^2=39/5
∴所求双曲线方程为:x^2/(39/5-y^2/(39/20)=1.
推荐
猜你喜欢
- 史密斯一家在干什么?『翻译』
- 加标点,使句子意思与括号中的要求相符.
- 西瓜经营户以2元每千克的价格购进一批小西瓜,以3元每千克的价格出售,每天可出售200千克为了促销,该营销
- 星形接法改为三角形接法功率;电流等有什么变化?
- 英语翻译
- 已知函数f(x)=x^2+x-ln(x+a)+3b在x=0出取得极值0.
- 知道上善若水.水善利万物,而不争;处众人之所恶,居善地,心善渊,与善仁,言善信,政善
- 任意一个平行四边形都能分成两个相同的三角形_(判断对错)