伴随矩阵:设A是(n>=2)阶方阵,A*是A的伴随矩阵,证明:r(A*)=n的充要条件是r(A)=n-1.
这题是要结合矩阵的秩和伴随矩阵的性质吗?能否给出必要性或者充分性的证明,只要一方就可以了.
人气:463 ℃ 时间:2019-11-24 13:03:08
解答
你的结论就是错的如果r(A*)=n 那么r(A)=n 这才是对的
我就证明一个比较难想的即 若r(A)=n-1那么r(A*)=1
由于r(A)=n-1 所以A中有一行为0 |A|=0 有n-1阶非零子式子 所以r(A*)>=1
由于AA*=|A|E=0
r(A*)+r(A)
推荐
- 设n阶方阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;
- 设A为n阶方阵,A*为A的伴随矩阵,证明:n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)
- 证明如果A是n阶方阵,A*是A的伴随矩阵,那么 R(A*)=①n,R(A)=n,②1,R(A)=n-1,③R(A)=0,R(A)
- 设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
- 设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n
- 一个数比5/6的7/5倍少2/3,求这个数
- 宋朝和唐朝,哪个是中国古代各个封建王朝中最理想的社会制度?
- 杠杆.滑轮.斜面.相关应用题 和 填空题 20道及答案
猜你喜欢