设f(x)为连续函数,证明 ∫ f(3-x) dx= ∫ f(x) dx上限是2 下限是1
人气:321 ℃ 时间:2020-04-06 01:25:25
解答
∫ (1,2)f(3-x) dx
令t=3-x, 则x=3-t, 从而dx=-dt
从而∫ (1,2)f(3-x) dx=∫ (2,1)f(t) (-dt)=∫ (1,2)f(t) dt=
=∫ (1,2)f(x) dx.
推荐
- 设函数f(x)在【0,1】上连续,在(0,1)内可导,且3∫f(x)dx=f(0),(上限为1,下限为2/3),证明:
- 设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx
- 证明:若函数f(x)在[0,1]上连续,则∫xf(sinx)dx=π/2∫f(sinx)dx (上限 π,下限 0)
- 设函数f(x)在区间[0,1]上连续,证明∫f(1-2x)dx上限为1/2下限为0=1/2∫f(x)dx上限
- 设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx (上限是T,下限是0)
- 整数和小数的四则运算的计算方法: 整数 小数 加法和减法 乘法 除法
- 要求:1、整体思想
- 8个小朋友分6张饼,应如何切,才能使切的次数最少,并且每个小朋友分得的同样多呢?
猜你喜欢