已知函数f(x)=Asin(wx+φ)+A在x属于0,7π内取得一个最大值和最小值,且当x=π,y最大3,x=6π,y最小为-3
(1)求此函数解析式 (2)是否存在实数m,满足不等式:Asin(ω√(-m^2+2m+3)+φ)>Asin(ω√(-m^2+4)+φ?若存在,求出m的值(或范围),若不存在,请说明理由
人气:498 ℃ 时间:2019-09-26 00:11:30
解答
(1)A(>0)=3,周期2π/w=2(6π-π),w=1/5,当x=π时,取wx+φ=π/5+φ=π/2,得φ=3π/10,
此函数解析式为f(x)=3sin(x/5+3π/10)
(2)问题即是否存在实数m,满足不等式:sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10].
首先,-(m-1)^2+4>=0,-m^2+4>=0
即|m|<=2.|m-1|=2则-1=当-1=-m^2>-(m-1)^2>=-4,
-3π<3π/10=<√[-(m-1)^2+4]/5+3π/10<√(-m^2+4)/5+3π/10<=4/5+3π/10<2π,
f(x)在[-3π,2π]上递增,sin{√[-(m-1)^2+4]/5+3π/10}当1/22π>4/5+3π/10=>√[-(m-1)^2+4]/5+3π/10>√(-m^2+4)/5+3π/10>=3π/10>-3π,
f(x)在[-3π,2π]上递增,sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10]
所以,存在实数m,满足不等式:sin{√[-(m-1)^2+4]/5+3π/10}>sin[√(-m^2+4)/5+3π/10],
m的取值范围为(1/2,2].
推荐
- 已知函数 y=Asin(wx+Ф)(A>0,w>0)在同一周期内,当x=∏/12时,y取最大值2,当x=7∏/12时,y取最小值-2
- 已知函数f(x)=Asin(wx+φ) (A>0,w>o,|ф|< )的图像在y轴上的截距为1,它在y轴右侧的第一个最大值和最小值分
- 函数y=Asin(wx+B)(A>0,w>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值-3(1)求此函数解析式(2)写出该函数的单调递增区间
- 已知函数f(x)=Asin(wx+φ),的图象在y轴右侧的第一个最大值点和最小值点分别为
- 已知函数y=Asin(ωx+φ),在同一周期内,当x=π12时,取最大值y=2,当x=7π12时,取得最小值y=-2,那么函数的解析式为( ) A.y=12sin(x+π3) B.y=2sin(2x+π3) C.y=2sin(x2-π6)
- 情和义怎么解释
- 用适当的介词填空 Kate has been studying English _______ seven.
- 谁能告诉我稀有气体,金属,非金属,最外层电子排布的特点,
猜你喜欢