> 数学 >
如图,在等腰梯形ABCD中,AD∥BC,G是边AB上的一点,过点G作GE∥DC交BC边于点E,F是EC的中点,连接GF并延长交DC的延长线于点H.求证:BG=CH.
人气:422 ℃ 时间:2020-06-13 02:58:05
解答
证明:在△GEF和△HCF中,
∵GE∥DC,
∴∠GEF=∠HCF,
∵F是EC的中点,
∴FE=FC,
而∠GFE=∠CFH(对顶角相等),
∴△GEF≌△HCF,
∴GE=HC,
四边形ABCD为等腰梯形,
∴∠B=∠DCB,
∵GE∥DC,
∴∠GEB=∠DCB,(2分)
∴∠GEB=∠B,
∴GB=GE=HC,
∴BG=CH.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版