>
数学
>
已知函数f(x)=mx
2
+lnx-2x在定义域内不是单调函数,则实数m的取值范围______.
人气:244 ℃ 时间:2019-09-18 01:56:05
解答
因为f′(x)=2mx+
1
x
-2,x>0,
所以f′(x)=2mx+
1
x
-2≥2
2mx•
1
x
-2=2(
2m
-1),当且仅当2mx=
1
x
取等号.
得到f′(x)的最小值为2(
2m
-1),
所以2(
2m
-1)<0即m<
1
2
时,函数f(x)在定义域内不是单调函数.
故答案为m<
1
2
推荐
已知函数f(x)=mx2+lnx-2x在定义域内是增函数,则实数m范围为_.
函数f(x)=mx^2+lnx-2x在定义域内是增函数,实数m的取值范围是?
已知函数f(x)=mx2+lnx-2x在定义域内是增函数,则实数m的取值范围为( ) A.m>12 B.m<1 C.m≤12 D.m≥12
已知函数f(x)=12mx2+lnx-2x在定义域内是增函数,则实数m的取值范围为( ) A.[0,+∞) B.(0,+∞) C.[-3,+∞) D.[1,+∞)
如果函数f(x)=2X^2-lnx在定义域的一个子区间(k-1,k+1)上不是单调函数,则实数的取值范围是( )
点A(-2,0)和B(2,0),且动点P使PA垂直于PB,求P的轨迹方程
测量学中后视减前视是不是高差?
酶、ATP都与新陈代谢有关,两者的合成有什么关系?
猜你喜欢
You must listen to her mother _ the teacher carefully and try to write _ the teacher's words.
一个公司去年平均每月营业额20万元,按照营业额的10%纳税.这个公司去年的实际收入是多少万元?
踌躇不前的反义词
不定式做主语好还是it做主语好
电解水得11.11L氢气(标准情况下氢气密度0.09g/L),需电解多少克水?同时得多少克氧气?
为什么牛奶放入水中不能形成溶液?
英语 English problem (9 10:18:16)
以方程组 y=-x+2的解为坐标的点(x,y)在平面直角坐标系中的位置是 { y=x-1 A,第一象限 B,第二象限 C,
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版