> 数学 >
如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6cm,点Q从C开始沿CD边向D移动,速度是每秒1厘米,点P从A开始沿AB向B移动,速度是点Q速度的a倍,如果点P,Q分别从A,C同时出发,当其中一点到达终点时运动停止.设运动时间为t秒.已知当t=
3
2
时,四边形APQD是平行四边形.
(1)求a的值;
(2)线段PQ是否可能平分对角线BD?若能,求t的值,若不能,请说明理由;
(3)若在某一时刻点P恰好在DQ的垂直平分线上,求此时t的值.
人气:207 ℃ 时间:2019-08-19 16:38:04
解答
(1)∵四边形APQD是平行四边形
∴6-
3
2
=
3
2
a

即:a=3;
(2)若线段PQ平分对角线BD,即DO=BO,
在△DOQ和△BOP中,
∠QDO=∠OBP
DO=OB
∠DOQ=∠POB

∴△DOQ≌△BOP(ASA)
∴DQ=BP
即:6-t=12-3t,
解得:t=3;
(3)分别过点C、D作CN⊥AB,DM⊥AB,交AB于点M、N
可得:四边形DMNC是矩形,
∴∠AMD=∠CNB=90°,AD=BC,DM=CN,
在Rt△DAM和Rt△CBN中
AD=BC
DM=CN

∴Rt△DAM≌Rt△CBN(HL),
∴AM=
12-6
2
=3
∵点P在DQ的垂直平分线EP上
∴PD=PQ,DE=
1
2
DQ,四边形DEPM是矩形
∴DE=PM,
即:
6-t
2
=3t-3

解得:t=
12
7
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版