∴sinB(
sinA |
cosA |
sinC |
cosC |
sinAsinC |
cosAcosC |
∴sinB•
sinAcosC+sinCcosA |
cosAcosC |
sinAsinc |
cosAcosC |
∴sinB(sinAcosC+sinCcosA)=sinAsinc
∴sinBsin(A+C)=sinAsinC,
∵A+B+C=π
∴sin(A+C)=sinB
即sin2B=sinAsinC,
由正弦定理可得:b2=ac,
所以a,b,c成等比数列.
(II)若a=1,c=2,则b2=ac=2,
∴cosB=
a2+c2−b2 |
2ac |
3 |
4 |
∵0<B<π
∴sinB=
1−cos2B |
| ||
4 |
∴△ABC的面积S=
1 |
2 |
1 |
2 |
| ||
4 |
| ||
4 |