长方体AC'中AB=2 AA'=1直线BD与平面AA'B'B所在的角为30度 F为A'B'中点
求二面角D-BF-B'的平面角的余弦值(向量法)
人气:227 ℃ 时间:2020-02-04 08:34:49
解答
你自己画个图比较好看
首先建立坐标系
令DD`为Z轴 DA为X轴 DC为y轴 D为原点
由题意得∠ABD=30°
AD=AB*tan30°=(2√3)/3
四点的坐标写出来
D(0,0,0) B((2√3)/3,2,0) F((2√3)/3,1,1) B`((2√3)/3,2,1)
向量DF((2√3)/3,1,1) 向量DB((2√3)/3,2,0)
设平面DBF的法向量为向量m(x,y,z)
向量DF*向量m=0
向量DB*向量m=0
即 (2√3)/3*x+y+z=0
(2√3)/3*x+2y=0
令x=3 解得y=-√3 z=-√3
向量m(3,-√3,-√3)
平面BFB`法向量为向量DA((2√3)/3,0,0)
所成二面角即为向量m和向量DA所成角
向量m*向量DA=2√3
|m|=√15,|DA|=(2√3)/3
cosα=(向量m*向量DA)/|m||DA|
=√15/5
推荐
- 长方体AC‘中,AB=15,BC=8,求AA’与平面B’D'D的距离
- 已知长方体ABCD-A'B'C'D' AB=2 AA'=1 直线BD与平面AA'B'B所成的角为30 AE垂直与BD 垂足为E F为A'B' 的中点
- 已知长方体(如图)中,AB=3,AD=4,AA'=5,求异面直线AA'和DC的距离;直线A'D'分别与平面AC,平面BC的距离
- 长方体ABCD-A’B’C’D’中,AB=1,AA’=2,E是侧棱BB’中点,则直线AA’与平面A'D'E所成角的大小是?
- 已知线段AB在平面a内,线段AC垂直a,线段BD垂直AB,且AB=a,AC=BD=b,线段BD与a所成角为30度,求CD的长
- f(X)=loga(1+x/1-X) (a大于0且a不等于1)
- 如图,E,F分别是正方形ABCD的边CD、AD上的点.且CE=DF,AE、BF相交于点O,下列结论:①AE=BF,②AE⊥BF,③AO=OE,④S△AOB=S四边形DEOF中,错误的有_.(只填序号)
- (-5)+(-2)-(-7)
猜你喜欢