设二次函数f(x)=ax²+bx+c(a,b,c∈R)满足下列条件:①当x∈R时,其最小值为0,
且f(x-1)=f(-x-1)成立;
②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值
(2)求f(x)的解析式
(3)求最大的实数m(m>1),使得存在t∈R,只要当x∈【1,m】时,就有f(x+t)≤x成立
人气:158 ℃ 时间:2019-08-18 21:54:13
解答
(1)
因为1属于(0,5),因此1a=1/4
=>f(x)=(x+1)^2/4
(3)
又(x+1)^2/4-x=(x-1)^2/4>=0
因此(x+1)^2/4>=x
显然,x属于[1,m]时,是单调递增区间,要使x属于[1,m]时,都有f(x+t)(x+t+1)^2/4=x
=>x^2+2(t-1)x+(t+1)^2=0 (a)
又曲线通过(1,1)点,因此1是它的一个解
=》1+2(t-1)+(t+1)^2=0
=>t=-4
将t=-4代入(a)
=>x^2-10x+9=0
=>x1=1,x2=9
因此m=x2=9
因此这个最大的实数m的值为9
推荐
- 二次函数Y=ax²+bx+c,当x6时,Y随x的增大而增大,其最小值为-12其图像于x轴
- 已知二次函数f(x)=ax²+bx+c(a,b,c属于R)满足下列条件:①当x属于R时,f(x)的最小值为0
- 已知二次函数f(x)=ax²+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)最小值为-1
- 设二次函数f(X)=ax²+bx+c(a,b,c属于R)满足下列条件①当X属于R时,其最小值为0且f(x-1)=f(-x-1)成立②当x属于(0,5)时,x≤f(x)≤2|x-1|+1恒成立,(1)求f(1)的值(2)求F(x)的
- 若二次函数f(x)=ax²+bx+c中,f(-1)=f(3)=1,且f(x)的最小值是-7,求f(x)的解析式
- ()全社会一致行动起来,()维护和平,制止战争.关联词填空
- 比较大小 1/(tan(-13π/7)),1/(tan9π/8)
- 一批苹果,卖出总数的20%后,有运来40箱,这时的苹果与原来的比是28:25,这时的苹果多少箱
猜你喜欢