正方形ABCD的对角线BC上取BE=BC,联结CE,P为CE任一点,PQ⊥BC,PR⊥BE,求PQ+PQ=1/2BD
人气:404 ℃ 时间:2019-10-14 02:25:41
解答
证明:连接BP
作CM⊥BD于点M
∵△BCE的面积=△BCP的面积+△BEP的面积
∴1/2BC*PQ+1/2BE*PR=1/2BE*CM
∵BC =BE
两边同时除以1/2BC得
PQ+PR=CM
∵ABCD 是正方形
∴CM=1/2BD
∴PQ+PR=1/2BD
推荐
- E是边长为1的正方形ABCD对角线BD上一点,且BE=BC,P为CE上任意一点,PQ垂直BC于点Q,PR垂直BD于点R,则...
- 在正方形ABCD的对角线BD上截取BE=BC,连结CE,P为CE上一点,PQ垂直于BC于Q,PR垂直于BE于R,若AC=a,则PQ+PR=______
- 如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是( ) A.22 B.12 C.32 D.23
- E是边长为1的正方形ABCD的对角线BD上一点且BE=BC,P为CE上一点,PQ垂直BC于点Q,PR垂直BE于点R
- 如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是( ) A.22 B.12 C.32 D.23
- 复数域上存在任意次数的多元不可约多项式么?(注意是多元多项式,一元的当然只有一次和零次的了)
- 星星像什么
- 一道英语选择(初三)
猜你喜欢