计算∫∫∫Ωz dxdydz其中Ω是由锥面Z=h/(R·sqrt(x^2+y^2))与平面Z=h(R大于0,h大于0)所围成的闭区域
∫∫∫Ω中Ω为三重积分的下标,Z=h/(R·sqrt(x^2+y^2))表示 h 除以下面的值.这值为R乘以(根号下x的平方加y的平方的和)
人气:321 ℃ 时间:2020-04-17 05:21:47
解答
推荐
- 计算∫∫∫zdxdydz,其中Ω是由锥面z=h*(根号下x2+y2)/R与平面z=h(R>0,h>0)所围成的闭区域
- 计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域.
- 设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdydz.
- 计算∫∫∫zdxdydz,其中Ω是由锥面z=h*√(x2+y2)/R与平面z=h(R>0,h>0)所围成的闭区域
- 计算∫∫∫(x^2+y^2)dxdydz Ω是由曲面z=x^2+y^2及平面z=4所围成的闭区域
- 情和义怎么解释
- 用适当的介词填空 Kate has been studying English _______ seven.
- 谁能告诉我稀有气体,金属,非金属,最外层电子排布的特点,
猜你喜欢