> 数学 >
设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=
人气:264 ℃ 时间:2019-08-22 14:58:34
解答
|A-E|
= |A-AA^T|
= |A(E-A^T)|
= |A||E-A^T|
= |A||E-A| --- (E-A^T)^T = E-A
= |A| (-1)^(2n+1) |A-E|
= -|A||A-E|
所以 |A-E|(1+|A|)=0
因为 |A|>0
所以 1+|A|≠0
所以 |A-E| = 0.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版