>
数学
>
设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=
人气:316 ℃ 时间:2019-08-22 14:58:34
解答
|A-E|
= |A-AA^T|
= |A(E-A^T)|
= |A||E-A^T|
= |A||E-A| --- (E-A^T)^T = E-A
= |A| (-1)^(2n+1) |A-E|
= -|A||A-E|
所以 |A-E|(1+|A|)=0
因为 |A|>0
所以 1+|A|≠0
所以 |A-E| = 0.
推荐
若A是n阶方阵,且AAT=E,|A|=-1,证明|A+E|=0.其中E为单位矩阵.
.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0.
线性代数问题.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.
若A是n阶方阵,且AAT=E,|A|=-1,证明|A+E|=0.其中E为单位矩阵.
线性代数,已知A是2n+1阶矩阵正交矩阵,即AA^T=A^TA=E,证明E-A^2的行列式为零
the program ended//英语句子对吗?
单项式5x²y,3x²y²,-4xy²的和
I think it is difficult to do the work in an hour.句子正确吗?
猜你喜欢
There are many s_____ in his book.
英语翻译
的寓意和的寓意?
地壳、地幔、地核的关系
英语单词过去式+ed,读音变化有什么规律
计算第四季度的劳动平均生产率
一根长方体木料,左右两个面是正方形,其余四个面的面积总和是7.2平方米,
it's very late.You have to____if you want to catch the last bus.
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版