> 数学 >
.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0.
我的问题是为什么
|A| |E+A'|
= |A| |(E+A)'|
= |A| |E+A|
人气:250 ℃ 时间:2019-10-19 17:04:32
解答
你是问的下面这三个等式为什么成立,还是你的标题的题目呢?
如果是下面这三个等式的话
第一个等式是因为(E+A')=E'+A'=(E+A)'
第二个等式是因为一个矩阵的行列式与它的转置的行列式相等.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版