函数 F(X)=x^3+ax^2+bx(a,b为R《全体实数》)的图象经过点P(1,2),且在点P处的切线斜率为8.
F(X)=x^3+ax^2+bx(a,b为R《全体实数》)的图象经过点P(1,2),且在点P处的切线斜率为8.求a,b的值和f(x)的单调区间和f(x)在[-1,1]的最值
人气:406 ℃ 时间:2019-09-03 08:52:14
解答
f(x)=x^3+ax^2+bx 经过(1,2)所以1+a+b=2即a+b=1f'(x)=3x^2+2ax+b因为在点P处的切线斜率为8,即f'(1)=8即3+2a+b=8即2a+b=5所以a=4 b=-3原函数为f(x)=x^3+4x^2-3x解f'(x)=0在区间[-1,1]有根x=1/3所以当x=1/3时有极值f...
推荐
猜你喜欢
- 长方体棱长和为216厘米,它的长、宽、高之比为4比3比2,长方体的表面积是多少平凡厘米
- 用英语翻译:在一个岛上
- 一个初三动词时态填空.很简单的说
- 一直a>b>c>d,则(1/(a-b)+1/(b-c)+1/(c-d))*(a-d)的最小值
- (1)画圆O以及互相垂直的两条直径AB,CD;以点A为圆心,AO为半径画弧,交圆O于点E,F(点E在劣弧AC上);连接AE,AD,EF,EC,OE,OF;
- 三元一次函数在空间直角坐标系中怎么画?
- 尤其初2的数学和英语基础不是很扎实
- 一辆初速度为18km/h的汽车,以0.5m/s2加速度做匀加速直线运动,加速到10s时汽车的速度是多大?