已知椭圆X^2/4+Y^2/3=1的内接三角形ABC,焦点在边BC上,A在椭圆上运动,试求三角形ABC的重心的轨迹
人气:441 ℃ 时间:2019-10-27 17:48:21
解答
x²/4+y²/3=1
因为是内接三角形ABC,且焦点在BC上,因此B,C为椭圆的长轴端点
a²=4
a=2
点B,C的坐标分别为(-2,0),(2,0)
设点A的坐标为(2cosa,√3sina)
重心G坐标为(x,y)
x=(-2+2+2cosa)/3,
y=(0+0+√3sina)/3
所以
cosa=3x/2
sina=√3y
cos²a+sin²a=9x²/4+3y²
9x²/4+3y²=1
此为轨迹方程
是个椭圆
推荐
- 椭圆x^2/16+y^2/9的内接三角形ABC,它的一边BC与长轴重合,A在椭圆上运动,求三角形ABC的重心轨迹
- 点P在以F1、F2为焦点的椭圆x23+y24=1上运动,则△PF1F2的重心G的轨迹方程是_.
- 已知椭圆x^2/4+y^2/3=1的内接圆三角形ABC,焦点在边BC上运动,试求三角形ABC的重心的轨迹.
- 在椭圆x^2/a^2+y^2/b^2=1中,内接三角形ABC的一边BC与长轴重合,A是椭圆上的动点,则三角形ABC的重心轨迹方程
- 在椭圆x216+y29=1内,有一内接三角形ABC,它的一边BC与长轴重合,点A在椭圆上运动,则△ABC的重心的轨迹方程为 _ .
- dutch 到底是德国还是荷兰?
- 先观察有什么规律,填写空格-1,1,0,1,1,2,( ),5,
- 急死啦,英语词
猜你喜欢