函数F(X)=AX的立方+BX的平方+CX
在点X0处取得极大值为5,其导函数Y=F(X)的图象经过点(1,0)(2,0)
⑴求X0的值.
⑵求A,B,C的值.
人气:412 ℃ 时间:2020-05-20 00:11:22
解答
对F(X)=Ax^3+Bx^2+Cx 求导数,得
F'(x) = 3Ax^2 +2Bx+C
因导函数Y=F(X)的图象经过点(1,0)(2,0),所以原函数的极值点为
x1=1,x2=2
令F'(x)=0
则有
3A+2B+C=0
12A+4B+C=0
·若x=1为极大值点,则
F(1)=A+B+C=5
解以上三个方程组成的方程组,得
A=2
B=-9
C=12
所以导函数为 y=f(x) = 6x^2-18x+12
在区间 (-∞,1)上 导函数 >0
在区间(1,2)上,导函数<0
所以 x=1 为极大值点.满足假设.
·若x=2为极大值点,则
F(2) = 8A+4B+2C =5
解以上三个方程组成的方程组,得
A = 5/2
B = -45/4
C = 15
所以导函数为 y=f(x) = 15/2x^2-45/2x+15
因此抛物线开口向上,
则 在区间(1,2)上,导函数 <0
在区间(2,+∞)上,导函数 >0
所以x=2 为极小值点.不满足题设.
综上,
(1)极大值点 x0 = 1
(2) A,B,C的值分别为 A=2,B=-9,C=12
推荐
- 已知函数f(x)=ax的三次方+bx的平方+cx+a的平方 (a,b,c属于R)的单调递减区间(1,2),且满足f(0)=1..
- 设函数f(x)=x3+bx2+cx(x∈R),若g(x)=f(x)-f′(x)是奇函数 (1)求b,c的值; (2)求g(x)的单调区间.
- 已知函数f(x)=ax立方+bx平方+cx(a不等于0),在x=正负1时,f(x)取得极值,且f(1)=-1,求f(x)的表达式
- 函数f(X)=x4次方+ax三次方+bx平方+cx+d,若f(1)=1,f(2)=2,f(3)=3,求f(4)+f(0)
- 已知函数F(x)=x的立方加bx的平方加cx加d 在区间[负1.2]上是减函数,那么b+c=?
- 2(3a-1)-3(2-5a+3a^2)其中a=-3/1 先化简 再求值
- 346人排两纵队,前后两人相距0.5米,队伍每分钟走65米,过889米的桥第一排上桥到最后一排离桥共需多少分.
- 已知α β均为锐角,且cosα=2倍根号5/5,cosβ=根号10/10,求α-β的值?
猜你喜欢