> 数学 >
如图,E,F分别是正方形ABCD的边CD、AD上的点.且CE=DF,AE、BF相交于点O,下列结论:①AE=BF,②AE⊥BF,③AO=OE,④S△AOB=S四边形DEOF中,错误的有______.(只填序号)
人气:141 ℃ 时间:2019-10-09 00:45:43
解答
在正方形ABCD中,∠BAF=∠D=90°,AB=AD=CD,
∵CE=DF,
∴AD-DF=CD-CE,
即AF=DE,
在△ABF和△DAE中,
AB=AD
∠BAF=∠D=90°
AF=DE

∴△ABF≌△DAE(SAS),
∴AE=BF,故①正确;
∠ABF=∠DAE,
∵∠DAE+∠BAO=90°,
∴∠ABF+∠BAO=90°,
在△ABO中,∠AOB=180°-(∠ABF+∠BAO)=180°-90°=90°,
∴AE⊥BF,故②正确;
假设AO=OE,
∵AE⊥BF(已证),
∴AB=BE(线段垂直平分线上的点到线段两端点的距离相等),
∵在Rt△BCE中,BE>BC,
∴AB>BC,这与正方形的边长AB=BC相矛盾,
所以,假设不成立,AO≠OE,故③错误;
∵△ABF≌△DAE,
∴S△ABF=S△DAE
∴S△ABF-S△AOF=S△DAE-S△AOF
即S△AOB=S四边形DEOF,故④正确;
综上所述,错误的有③.
故答案为:③.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版