1.已知曲线C:x^2+4xy+5y^2=1,求dy/dx并由此,求与直线y=(-1/2)x平行且与c相切的两直线的方程.
2.设y=x+sin2x,其中0
人气:323 ℃ 时间:2020-03-19 00:57:37
解答
1.已知曲线C:x^2+4xy+5y^2=1,求dy/dx并由此,求与直线y=(-1/2)x平行且与c相切的两直线的方程.
2.设y=x+sin2x,其中0
推荐
- 设曲线积分∫L(x4+4xyk)dx+(6xk-1y2-5y4)dy与路径无关,则k=_.
- dy/dx=0.5y^2*cotx
- L为三顶点(0,0)(3,0)和(3,2)的三角形区域的正向边界 求曲线积分∫L(2x-y+4x)dx+(5y+3x-6)dy
- 试确定λ的值,使曲线积分∫(A→B)(x^4+4x*y^3)dx+(6x^(λ-1)*y^2-5y^4)dy与路径无关,
- L是定点分别为(-1/2,5/2),(1,5),(2,1)的三角形正向边界,是计算曲线积分∮L(2x-y+4)dx+(5y-3x-6)dy
- 一环形线圈放在匀强磁场中,设第1s内磁感线垂直线圈平面(即垂直于纸面)向里,如图甲所示.若磁感应强度B随时间t变化的关系如图乙所示,那么第3s内线圈中感应电流的大小与其各处所受
- 英译中I dont know why i told this to you today,but hope you will not let any person eles knows
- 若|a^n|=½,|b|^n=3,求(ab)^2n的值
猜你喜欢