>
数学
>
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则( )
A.
f(3)<f(
2
)<f(2)
B.
f(2)<f(3)<f(
2
)
C.
f(3)<f(2)<f(
2
)
D.
f(
2
)<f(2)<f(3)
人气:281 ℃ 时间:2019-08-21 01:21:54
解答
因为f(x+1)=-f(x),
所以f(x+2)=-f(x+1)=-[-f(x)]=f(x).
所以f(x)是以2为周期的函数.
又f(x)为偶函数,且在[-1,0]上递增,
所以f(x)在[0,1]上递减,
又2为周期,所以f(x)在[1,2]上递增,在[2,3]上递减,
故f(2)最大,
又f(x)关于x=2对称,且
2
离2近,所以f(
2
)>f(3),
故选A.
推荐
定义在R上的偶函数y=f(x),满足f(x+1)= -f(x),且在〔-1,0)上单调递增,设a=f(3),b=f(/2),c=f(2)则大小关系?/2是开方的意思.(高二)
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则( ) A.f(3)<f(2)<f(2) B.f(2)<f(3)<f(2) C.f(3)<f(2)<f(2) D.f(2)<f(2)<f(3)
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增
已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log4a)+f(log14a)≤2f(1),则实数a的取值范围是( ) A.[1,4] B.(0,14] C.[14,4] D.(0,4]
定义在R上的偶函数y=f(x)满足f(x+1)=-f(x),且当x∈(0,1]时单调递增,试比较f(1/3),f(5/2),f(−5)的大小关系.
the clerk led me to the office
In fact___is a hard job for the naughty boys to keep quiet in the classroom
绝大多数的细胞非常小,必须借助显微镜观察,【判断对错】
猜你喜欢
这件事大家一定要认真尽量防止不出错误.这个病句怎么改?
质量为500g的铝壶装有5L的水,从20℃加热到沸腾(标准大气压),设煤放出的热量有30%被水和水壶吸收,至少
将半径为12cm的铁球融化,重新铸造出27个半径相同的小铁球(不计损耗),小铁球半径是多少cm?(提示:球的体积公式为v=4/3πR3)
小南上学期期末考试语文、数学和英语三科平均成绩90.5分,语文和数学平均分为91.5分,问英语成绩是多少分
英语翻译
强酸弱酸强碱弱碱电离有啥不同?
举出几对.(至少两对)具有相反意义的量,并分别用正负数表示.
一个除以8的除式中,被除数加商加余数等也73,问被除数是多少?求方程式
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版