>
数学
>
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则( )
A.
f(3)<f(
2
)<f(2)
B.
f(2)<f(3)<f(
2
)
C.
f(3)<f(2)<f(
2
)
D.
f(
2
)<f(2)<f(3)
人气:448 ℃ 时间:2019-08-21 01:21:54
解答
因为f(x+1)=-f(x),
所以f(x+2)=-f(x+1)=-[-f(x)]=f(x).
所以f(x)是以2为周期的函数.
又f(x)为偶函数,且在[-1,0]上递增,
所以f(x)在[0,1]上递减,
又2为周期,所以f(x)在[1,2]上递增,在[2,3]上递减,
故f(2)最大,
又f(x)关于x=2对称,且
2
离2近,所以f(
2
)>f(3),
故选A.
推荐
定义在R上的偶函数y=f(x),满足f(x+1)= -f(x),且在〔-1,0)上单调递增,设a=f(3),b=f(/2),c=f(2)则大小关系?/2是开方的意思.(高二)
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则( ) A.f(3)<f(2)<f(2) B.f(2)<f(3)<f(2) C.f(3)<f(2)<f(2) D.f(2)<f(2)<f(3)
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增
已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log4a)+f(log14a)≤2f(1),则实数a的取值范围是( ) A.[1,4] B.(0,14] C.[14,4] D.(0,4]
定义在R上的偶函数y=f(x)满足f(x+1)=-f(x),且当x∈(0,1]时单调递增,试比较f(1/3),f(5/2),f(−5)的大小关系.
内燃机是燃料在 内燃烧的热机
Cucl2固体是什么颜色,白色还是棕黄色?
0.5x+30=15.5x怎么解
猜你喜欢
如何测定亚硝酸钠中碳酸钠的含量,请帮忙设计一个方案.
急需一英语4人对话,关于happiness的,最好大学水平
(x+1)²(x+2)-(x+1)(x+2)² ;9x的五次方-35x³-4x 分解因式 ,可以不写步骤,
(a+b)-(x+y)(b-a)如何提负号?
甲乙两个数,如果把甲数的五分之一给乙数,那么乙数现在就比甲数多3个,如果把乙数的三分之一给甲数,那么现在乙数就比甲数少7个,甲乙两数分别是多少?
‘机器人’用英语怎么说?
翻译;现在网购越来越受到人们的欢迎,你可以买到任何你想要的东西
1.you should feed your pet at the table(改为否定句) y
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版