>
数学
>
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则( )
A.
f(3)<f(
2
)<f(2)
B.
f(2)<f(3)<f(
2
)
C.
f(3)<f(2)<f(
2
)
D.
f(
2
)<f(2)<f(3)
人气:218 ℃ 时间:2019-08-21 01:21:54
解答
因为f(x+1)=-f(x),
所以f(x+2)=-f(x+1)=-[-f(x)]=f(x).
所以f(x)是以2为周期的函数.
又f(x)为偶函数,且在[-1,0]上递增,
所以f(x)在[0,1]上递减,
又2为周期,所以f(x)在[1,2]上递增,在[2,3]上递减,
故f(2)最大,
又f(x)关于x=2对称,且
2
离2近,所以f(
2
)>f(3),
故选A.
推荐
定义在R上的偶函数y=f(x),满足f(x+1)= -f(x),且在〔-1,0)上单调递增,设a=f(3),b=f(/2),c=f(2)则大小关系?/2是开方的意思.(高二)
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则( ) A.f(3)<f(2)<f(2) B.f(2)<f(3)<f(2) C.f(3)<f(2)<f(2) D.f(2)<f(2)<f(3)
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增
已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log4a)+f(log14a)≤2f(1),则实数a的取值范围是( ) A.[1,4] B.(0,14] C.[14,4] D.(0,4]
定义在R上的偶函数y=f(x)满足f(x+1)=-f(x),且当x∈(0,1]时单调递增,试比较f(1/3),f(5/2),f(−5)的大小关系.
如图,M、N为线段AB上两点,且AM:MB=1:3,AN:NB=5:7.若MN=2,求AB的长.
已知a>1,解关于x的不等式2log以a为底(x-1)>log以a为底[1+a(x-2)]
Simon plays football on Saturday.(对划线部分提问,划线部分是on Satueday)
猜你喜欢
已知,如图,DE为△ABC的边AB的垂直平分线,CD为△ABC的外角平分线,与DE交于D,DM⊥BC于M,DN⊥AC于N,求证:AN=BM.
关于孝随笔高中生300字
5是负5的相反数
一个无盖的圆柱形水桶,侧面积是12.56平方分米,底面直径和高相等,要求表面积.
ear的同音词
K2CO3和HCL反应为什么不是2KCL+H2CO3而是2KCl+H2O+CO2?不是酸加盐变成新酸加新盐吗?
简述谷氨酸生物合成过程!
在拔河比赛中拉力较大的一组定能获胜对吗
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版