1.已知抛物线Y^2=-X与直线L:Y=K(X+1)相交于A,B两点,
(1)求证:OA垂直OB
(2)当△OAB的面积等于√10时,求K的值.
2.直线L:Y=KX+1与双曲线C:2X^2-Y^2=1的右支相交于不同的两点A,B 求实数K的取值范围.
人气:413 ℃ 时间:2020-04-10 05:49:52
解答
解(1)分别设OA,OB的斜率为k1,A(x1,y1),B(x2,y2)
∴k1=y1/xi,k2=y2/x2
解 y²=-x
y=k(x+1) 得k²x+(1+2k²)x+k²=0
∴x1x2=1,x1+x2=-(1+2k²)/k²
y1y1=k²(x1x2+x1+x2+1)=-1
∴k1k2=y1y2/x1x2=-1
所以OA⊥OB⊥
(2)√(x1²+y1²)√(x2²+y2²)=2√10
∴(x1²+y1²)(x2²+y2²)=40
x1²x2²+x2²y1²+x1y2²+y1²y2²=40
∵x1x2=1,y1y1=-1
∴x2²y1²+x1y2²+2=40
∵y²=-x
∴-x1x2(x1+x2)=38
∴=(1+2k²)/k²=38
解得k=-1/6或1/6
推荐
- 1 已知两条异面直线a b 所成的角为π/3,直线c与a b都成θ角,则θ的取值范围是?
- 1.(1) 求y=2+3x+4/(x-1)的最小值 (x>1)
- 1.求到两个定点A(-2,0),B(1,0)的距离之比等于2的点的轨迹方程?
- 1)不等式(3-x)/(3+x)>|(2-x)/(2+x)|且x>0的解集为?
- 1若a,b,c>0,且a²+2ab+4bc+2ac=12,则a+b+c的最小值是,答案是2根3.
- 矩形ABCD的两条对角线相交于点M(1,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.
- 写出有关黄河的成语和古诗词句.(各写2个)
- What do you like doing?写出它的扩展句
猜你喜欢