> 数学 >
设A,B为n阶矩阵,且满足A^2=A,B^2=B,(A+B)^2=(A+B),证明:AB=0.
人气:102 ℃ 时间:2020-03-28 16:41:11
解答
由已知得
A+B = (A+B)^2 = A^2+B^2+AB+BA = A+B+AB+BA
所以有
AB+BA=0
左乘A
(A^2)B+ABA=0
AB+ABA=0
AB(E+A)=0
因为A^2=A,所以A的特征值只能是0或1,
故E+A可逆所以有 AB = 0.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版