求文档: 设A是n阶可逆方阵,E是单位矩阵,A的平方=A的绝对值*E,证明A*=A
人气:129 ℃ 时间:2020-04-02 09:58:26
解答
因为 AA* = |A|E,而 A^2 = |A|E .
所以 AA* = AA.
由A可逆,等式两边左乘A的逆即得 A* = A#
推荐
- 设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.
- 设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n
- 设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
- 若A为n阶方阵,E为n阶单位阵,且A^3=O,证明A-E为可逆矩阵!
- 设A,B均为n阶方阵,E为单位矩阵,证明:若E-AB可逆,则E-BA也可逆,并求E-BA的逆
- yesterday'football match made them feel (bored,boring)
- nether nor与either的意思和so that的意思与用法?用法句个例子和位置
- 若P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1、F2是左、右焦点,设角F1PF2=θ,求证S△F1PF2=(b^2)*tan(θ/2
猜你喜欢