已知函数y=f(x)对任意x∈(-π/2,π/2)满足f′(x)cosx+f(x)sinx>0
则下列不等式成立的是
1,根号2f(-π/3)<f(-π/4)
2,根号2f(π/3)<f(π/4)
3,f(0)小于2f(-π3)
4,f(0)>根号2f(π/4)
人气:127 ℃ 时间:2020-10-02 01:36:18
解答
∵对任意x∈(-π/2,π/2)满足f′(x)cosx+f(x)sinx>0
∴[f(x)/cosx]'=[f′(x)cosx+f(x)sinx]/cos²x>0
∴f(x)/cosx是(-π/2,π/2)上的增函数
∴f(0)/cos0即f(0)< f(π/4)/(√2/2)∴f(0)<√2 f(π/4)<2f(π/3)
B,C,D均错
又f(-π/3)/cos(-π/3)∴2f(-π/3)<√2f(π/4)
即.√2f(-π/3)选A
推荐
猜你喜欢