| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
又∵tan(α-β)=-
| 1 |
| 3 |
| π |
| 2 |
利用同角三角函数的基本关系可得sin2(α-β)+cos2(α-β)=1,且
| sin(α-β) |
| cos(α-β) |
| 1 |
| 3 |
解得 sin(α-β)=-
| ||
| 10 |
(2)由(1)可得,cos(α-β)=
3
| ||
| 10 |
| 3 |
| 5 |
| 4 |
| 5 |
∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)…(12分)
=
| 4 |
| 5 |
3
| ||
| 10 |
| 3 |
| 5 |
| ||
| 10 |
9
| ||
| 50 |
| 3 |
| 5 |
| 1 |
| 3 |
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
| 1 |
| 3 |
| π |
| 2 |
| sin(α-β) |
| cos(α-β) |
| 1 |
| 3 |
| ||
| 10 |
3
| ||
| 10 |
| 3 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
3
| ||
| 10 |
| 3 |
| 5 |
| ||
| 10 |
9
| ||
| 50 |