如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆O相切于是P,正方形ABCD的顶点A、B在圆上,小圆在正方形的外部且与CD切于的Q,求正方形ABCD的边长.
人气:369 ℃ 时间:2019-11-01 20:02:29
解答
做直线PQ,交AB于E,交圆于F.
设AB=2x,则有:QE*BE=PE*EF
x*x=(10-3-2x)(3+2x)
解得:x=3,所以AB=6.
第一个回答~给分啊谢谢,辛苦手打的额
推荐
- 如图,PQ=10,以PQ为直径的圆与一个以20为半径的⊙O内切于点P,与正方形ABCD切于点Q,其中A、B两点在⊙O上.若AB=m+n,其中m、n是整数,求m+n的值.
- 已知 PQ=3 以PQ为直径的圆与一个以5为半径的圆相切与点P 正方形ABCD的顶点AB在大圆上 小圆在正方形上的外部且与CD切于点Q 求AB
- 如图,AB为圆O的直径,PQ切圆O于T,AC⊥PQ于C,交圆O于D,AT平分∠BAC.若AD=2,TC=根号3,求圆O的半径.
- 如图,AB为⊙O的直径,PQ与⊙O相切于T,过A点作AC⊥PQ于C点,交⊙O于点D.若AD=2,TC=3,则⊙O的半径为_.
- PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外...
- .一正项等比数列前11项的几何平均值为32.从这11项中抽去一项后所剩10项的几何平均值仍是32.
- 在静水中船速为20m每分钟,水流的速度为10m每分钟,若船从岸边出发,垂直于水流航线到达对岸的,问船行进的方向是 ? 求解,答案是与水流方向夹角120°不懂
- f(x)=√3 sin2x-2sin²x 怎么化简,
猜你喜欢