f(x)=alnx+0.5X2(a>0),若对任意两个不等的正实数X1,X2都有f(X1)-f(x2)/X1-X2>2恒成立,则a的取值范围
A.[1,+∞) B.(1,+∞) C.(0,1) D.(0,1]
为什么不选B
人气:217 ℃ 时间:2020-05-26 18:43:56
解答
要使f(X1)-f(x2)/X1-X2>2恒成立,只需f(x)的导数恒大于2
f'(x)=a/x+x>2
而a/x+x》2a 所以a>1
而当a=1时,f(x)=lnx+x2
f'(x)=1/x+x》2,当且仅当X1=X2=1时才取等号,而条件中是要求任意两个不等的正实数X1,X2
所以‘=’取不到,
推荐
- f(x)=alnx+0.5X2(a>0),若对任意两个不等的正实数X1,X2都有f(X1)-f(x2)/X1-X2>2恒成立,则a的取值范围
- 已知函数f(x)=alnx+1/2x2(a>0),若对于任意不等的正实数x1,x2都有f(x1)-f(x2)/x1-x2>2恒成立,则a的取值范
- 已知a>0,f(x)=x+alnx,若对区间(1/2,1)内的任意两个相异的实数x1,x2,恒有|f(x1)-f(x2)|>|1/x1-1/x2
- 已知函数f(x)=ax2+x,对任意实数x1,x2,f[(x1+x2)/2]>=[f(x1)+f(x2)]/2恒成立,则a的取值范围是?
- 已知f(x)=alnx+12x2(a>0),若对任意两个不等的正实数x1,x2,都有f(x1)−f(x2)x1−x2>2恒成立,则a的取值范围是( ) A.(0,1] B.(1,+∞) C.(0,1) D.[1,+∞)
- 听惯了赞誉的华丽之辞,觉得自己“完美无缺”,因而批评对于我们来说总抱有敌意.修改病句
- 2t+1/2×0.01×t²=3t经过哪几步化为0.01t²-2t=0?
- 数字的读法
猜你喜欢
- 诗集的前言 几十字的
- 从0.12mol的NaCl、MgCl2、AlCl3三种溶液,体积均为500ml时Cl-的物质的量浓度为
- 若定义新的运算;‘a※.b=-2a/(a-b)三次方求4※6
- 【急!】高一化学填空题一道.
- 按照计数习惯,整数从( )为位起,每()数位是一级
- 已知集合M={直线},N={圆},则M交N中元素个数为_______
- 一桶水,第一次倒出一半,然后再倒回桶中8千克,第二次倒出桶中水的一半,第三次倒出36千克,桶中还剩下12千克水,原来桶中有水多少千克?
- 一袋大米,第一次吃了40%还多5千克,第二次吃的是第一次的80%,这时还剩下12千克.这袋大米原来有多少千克?