> 数学 >
求证m²+n²,m²-n²,2mn是一组勾股数
人气:392 ℃ 时间:2020-02-06 02:50:09
解答
m²+n²要比m²-n²大,所以m²-n²肯定不可能作为斜边,
m²+n²-2mn=(m-n)²肯定大于等于0
所以,m²+n²为这三组数中最大的数,如果三者为勾股数据,那它一定是斜边
接下来就是计算了,(m²-n²)²+(2mn)²
可以用换元法设m²=a n²=b
那就转换为(a-b)²+4ab
结果刚好为(a+b)²即 (m²+n²)²
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版