已知方程x²+(1-k)x-k=0在(-2,3)上存在实数根,求实数k的取值范围
要过程谢谢
人气:354 ℃ 时间:2019-08-20 11:13:23
解答
由x²+(1-k)x-k=0,得(x+1)(x-k)=0,∴解得 x1=-1,x2=k.
由于 x1=-1已经满足 在(-2,3)上存在实数根的条件,∴k值可以随意.
故 k的取值范围是全体实数.
推荐
猜你喜欢
- 一个长方体的表面积是420平方厘米,这个长方体正好可以截成3个小正方体,则每个小正方体的表面积是_平方厘米.
- 将CaCI2·nH2O的晶体2.19g溶于水,配成100mL溶液,取此溶液20mL与10g5.74%的AgNO3溶液反应,使氯离子刚好反
- 彩虹上一个 米是啥成语呀
- 越王勾践卧薪尝胆,尝的是什么动物的胆
- 100万个鸡蛋有多重
- 分数和小数有什么不同,
- (列方程)一份试卷上共有25道选择题,做对一道题得4分,错一道扣1分,某同学得了90分,他作对了几道
- 已知:a>0,b>0,c>0,求证①(a+b)的平方≥4ab ②(a+b)(b+c)(c+a)≥8abc