> 数学 >
设函数f(x)=
2x2+2x
x2+1
,函数g(x)=ax2+5x-2a.
(1)求f(x)在[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
人气:144 ℃ 时间:2020-06-12 19:06:47
解答
(1)y=2x2+2xx2+1=2(x2+1)+2x−2x2+1=2+2(x−1)x2+1,令x-1=t,则x=t+1,t∈[-1,0],y=2+2tt2+2t+2,当t=0时,y=2;当t∈[-1,0),y=2+2t+2t+2,由对勾函数的单调性得y∈[0,2),故函数在[0,1]上的值域是[0,2]...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版