>
数学
>
证明1/(2^2-1)+1/(2^3-1)+……+1/(2^n-1)
有人说有五种方法,我已经得到三种,请大神再提供
人气:374 ℃ 时间:2020-05-22 16:32:54
解答
consider
for n>=3
1/(2^n-1) < (2/3) [1/2^(n-1)]
an = 1/[2^(n+1) -1]
a1=1/3
1/(2^2-1)+1/(2^3-1)+……+1/(2^n-1)
=Sn
=a1+a2+..+an
= 1/3 + 1/(2^3-1)-1/(2^4-1)+...+1/(2^n-1)这种方法我已经得到了。谢谢大神,确实很厉害。期待其他方法
推荐
证明 1+1/2+1/3+...+1/n>ln(n+1)+n/2(n+1) n≥1
用二项式定理证明: (1)2n+2•3n+5n-4(n∈N*)能被25整除; (2)(2/3)n-1<2/n+1(n∈N*,且n≥3).
怎么证明1+2+3+...+n=n(n+1)/2
如何证明:1+1/2!+1/3!+------+1/n!
证明:1/[(1+1)!]+2/[(2+1)!]+3/[(3+1)!]...n/[(n+1)!]=
求问这一段中的“bathtub This solid can be seen as a bathtub ring
比较两实数x^2+x-2与2x+4的大小
两道二次函数数学题,12;00关问题
猜你喜欢
(x+1)的平方(2x-3)+(x+1)(2x-3)+x(x+1)(2x-3);其中x=二分之一
ai发[ei]的单词有哪些?
用婉转造句
怎样检验SO2和CO2
菊之爱,陶后鲜有闻的意思
"希腊人的脑,中国人的手,阿拉伯人的脚" 其中“中国人的手”指的是什么
两道初一数学题,今天为止!初中水准的回答,就是∵啥,∴啥,详细啊
十年树木,百年树人这句话的修辞手法是什么谁能告诉我?
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版